STUDY OF DROUGHT AND SALT STRESS ON GERMINATION INDEXES OF ALYSSUM SPP AND TANACETUM PARTENIUM

FARNAZ RIYAHId, FARIBA MOHAMMADIAN YASUJ, MEHRAB YADEGARI*

*1- Department of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2- Department of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
3- Department of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

*Corresponding Author: Mehrab Yadegari

ABSTRACT

Medicinal plants are the ones with certain effective substances that are used in preventing and treating the illnesses.

Among the most important stages of the plants' growths, germination one can be mentioned. This stage is often influenced by the environmental tensions, especially salinity and aridity. The thesis consists of introduction, materials and methods and results and discussion.

In order to examine the effects of salinity and aridity tensions on the germination of the two medicinal plants of Alyssumspp and Tanacetumpartenuim, two separate experiments were conducted factorially in a Completely randomized basic design format with 6 levels of salinity (0, 0.12, 0.25, 0.5, 0.75, and 1 molar) and 5 levels of (0, -0.3, -0.6, -0.9, and -1.2 bar) in 4 repetitions. NaCl and PEG were used for making salinity treatment and also for the aridity tension, respectively. The results of the experiment showed that along with the increase in the salinity and aridity tensions, the rate and percentage of germination, length and shoot lengths, and also the dry and wet weights of the under experiment seeds were significantly reduced. The highest limits of endurance against salinity for the seeds of Tanacetumpartenuim and Alyssumspp were respectively 0.5 and 0.75 molar, while it was to -0.9 bar concentration for the aridity tension. Mutual influencing of salinity and aridity was also indicative of the endurance limits of 0.5 and 0.75 molar and -0.9 and -0.9 bar for the Tanacetumpartenuim and Alyssumspp seeds, respectively. Correlational results of the attributes showed the very significant influencing of salinity and aridity tensions on the attributes of the root and stem lengths.
In salinity tension and by using NaCl as well as germination of the Tanacetum partenuim and Alysum spp seeds in the witness treatment of -0.3 and -0.6 bar, there was a significant increase in the length and shoot lengths as well as dry weight, while the seeds did not germinate in -0.9 and -1.2 bar treatments. In aridity tension and by using PEG 6000 as well as germination of the Tanacetum partenuim and Alysum spp seeds in the witness treatment of 0.12, 0.25, and 0.5 molar, there was a significant increase in the length and shoot lengths as well as the dry weight, while the seeds did not germinate in 0.75 and 1 molar treatment. Their growth was stimulated to some extent in this level of tension, but all three attributes were linearly decreased when tension severity got more increased. It was while no lengths and shoots were practically formed under the salinity and aridity tension conditions to 1 molar and -1.2 bar. The research results showed that Tanacetum partenuim and Alysum spp are sensitive to salinity and aridity tensions in the stage of germination and plantlet growth, with somewhat more sensitivity to salinity than aridity tension.

Keywords: Seed, drought, Salinity, Alysum spp Tanacetum partenuim.

INTRODUCTION

Germination is considered as one of the important and sensitive stages of the plant’s life cycle as well as a key procedure in the plantlets growth (Hosseini and Rezvani Moghadam, 2006). Germination as the first stage in the plants life means the emergence and lengthening of the length and shoot as well as the allocation of the reserved nutrition’s to the embryo pirot, and also plays a determinative role in making the plantlet (Kafiee, et al., 2005). Based on this definition, germination consists of a series of occurrences as a result the embryo changes from the inactive and static state to an active and constructive metabolites form. Physiologically, germination is a procedure that begins through absorbing water by the dry seed and ends by the emergence of the initial root out of the seed coverage (Afzali, et al., 2006).

Germination and plantlet making are of special importance in determining the shrub’s ultimate compactness in the surface unit (Hosseini and Rezvani Moghadam, 2006).

Germination

On the whole, germination is the reactivation of the seed metabolical procedure and emergence of the length and shoot that leads to the seedlings formation, physiologically, germination begins by the initial stages of the biochemical reactivity and ends by the length removal (Dadkhah, 2010). Morphologically and also for testing the seed and plant adding, the definition of germination should also include the formation of the ordinary seedling out of the germinated seed. Totally,
germination is divided into three successive and separate, but simultaneous, stages (Hosseini and Rezvani Moghadam, 2006).

- **First stage**: It is the stage of getting awake or active in which water is absorbed by the seed, enzymes become active, and length emerges as a result of the linear growth of the cells.

- **Second stage**: It is the stage of digestion and transfer in which fats, proteins, carbohydrates, Endosperm, and cotyledon are digested, change into simpler chemical substances, and also transferred to the growth points of the embryos pivot.

- **Third stage**: It is the stage of seedlings growth in which development occurs as a result of cellular division in separate growth points of the embryonic pivot.

Background research

Seed the optimum temperature for germination is essential environment (clean race et al. 2013).

In the cellular response to the growing shortage of water can damage the cell surface, but may work with other responses to stress (Afzal 2005).

In particular with respect to the dry climate, plants regulate hormone secretion and lack of moisture and plant transpiration process in compliance with the specific mechanism (Pak Nejad et al. 2013).

The figures are higher germination under stress conditions have a greater chance of emergence (Zare et al. 2006).

Afzali et al (2006) Effect of seed germination chamomile (Matricaria chamomilla) were investigated and found that germination was very sensitive to drought stress. Salari and aldin Shams al (2007) Effects of water stress on the germination and establishment of seedlings of plant species Elymus Junceus and kochia prostrate examined and the results showed that drought reduced growth and weight species.

Lack of germination of plants in saline soils often due to high salt concentration in the seed culture because the upward movement of the accumulation of salts in the soil solution subsequent soil. (Ramroudi et al. 2006). Germination stage one of the most critical stages of plant growth is salinity (Hassanpour, et al., 2009).

Salt into the seed can have toxic effects on tissues and can reduce germination (Zatvr et al., 2011).

Sharafi (2006) to test the effect of different levels of salinity on seed germination Martyghal showed that all traits including uniformity of germination and seedling growth were affected by salinity stress.

Jamshidi (2005) The anise seed germination under salt stress showed that the percentage
of seed germination and seed vigor during
the shoot and root decreased under stress.
Fallahi et al in (2010) by studying drought
stress and salinity on seed germination
private Syat sage showed that with increasing
salinity and drought also reduced
germination and seedling length and reduce
the potential for water and increased salinity
its dry weight was reduced.

METHODOLOGY

In order to study the effect of osmotic
treatment of polyethylene glycol 6000 (PEG)
and sodium chloride induced salinity
treatments on indices Germination Tan
acetum premium and alyssum two separate
tests based on completely randomized design
with four replications in a factorial Herb
Research Branch, Islamic Azad University
was conducted in 2013. The effect of
different levels of osmotic treatments (zero, -
0/3 to -0/6 to -0/9 to -1/2 times, respectively,
D1, D2, D3, D4, D5) and Salinity (zero 0/12,
0/25, 0/75, 1 M, respectively, S1, S2, S3,
S4, S5, S6) were investigated. The effects of
water stress, soluble polyethylene glycol,
using the formula of Michel and Kaufmann
(Equation 1) was prepared. For the treatment
of sodium chloride salt was used. Within
each Petri dish of 10 cm, Whitman 100 filter
paper was placed over the seed. Before,
during and after the paper was disinfected
with alcohol to disinfect with alcohol was
washed with distilled water. Then 5 ml of the
desired solution (polyethylene glycol and
sodium chloride) was added to each petri
dish. To reduce water losses due to
evaporation of the solution into Petri, a Petri
around each sealed with Teflon and air to
penetrate for germination of seeds of 3 small
holes in the Teflon has been created. The
Petri dishes for 15 days at 25 ° C and the
optical rotation of 12 hours light and 12
hours of darkness were placed in germinator.
During the experimental period the number
of germinated seeds was recorded daily.
Exclusion criteria for seed germination and
view rootlet (Hosseini et al, 2006).

To calculate the percent germination of
formula (2) for determining the germination
rate of the formula (3) was used (stylish
Hamm et al., 2009).

\[
\Psi_S = -(1.18 \times 10^{-2})C - (1.18 \times 10^{-4})C^2 +
\]
\[
1(2.67 \times 10^{-4})CT + (8.39 \times 10^{-7})C^2T
\]

Germination = 100 (NG / NT)

here NG stands for the number of germinated
seeds, and NT stands for the whole number
of seeds.

\[
RS = \sum_{i=1}^{n} \frac{Si}{Di}
\]

Where RS equals the germination rate equal
to the number of germinated seeds per day
and DI the number of days to the count of n.n stands for day (for counting).

RESULTS
In this research, the effects of salinity and aridity tensions on germination and also such attributes of the two plants of Alyssum spp and Tanacetum partenuim as percentage and rate of germination, length and shoot lengths, and also dry and wet weights were measured. The results obtained out of the variance analysis and also the comparison of the means of the mentioned attributes based on Doncan test have been presented separately for two plants of Alyssum spp and Tanacetum partenuim in the tables and figures.

1-4) Rate of germination of Alyssum spp and Tanacetum partenuim seeds under the influence of the salinity tension.
Rate of germination of Alyssum spp and Tanacetum partenuim seeds was made under the influence of the salinity tension by which the highest rate was seen in the witness treatment and the lowest in the highest concentration of salinity.

In concentrations of 1 as well as 0.75 and 1 molar, Alyssum spp and Tanacetum partenuim seeds did not germinate, respectively. The endurance thresholds of the germination rates of Alyssum spp and Tanacetum partenuim seeds against the salinity tension were seen at 0.75 and 0.5 molar, respectively (figures 1-4 and 2-4).

2-4) Rate of germination of Alyssum spp and Tanacetum partenuim seeds under the influence of the aridity tension.
Rate of germination of Alyssum spp and Tanacetum partenuim seeds was influenced by the aridity tension by which the highest one was seen in the witness treatment and the lowest in the concentration of -0.9 bar. Rate of germination was reduced along with the increase in the aridity tension severity, in such a way that Alyssum spp and Tanacetum partenuim seeds did not germinate at the concentration of -1.2 bar. The endurance threshold of the rate of germination of Alyssum spp and Tanacetum partenuim seeds was seen against the aridity tension of -0.9 bar. (figures 3-4 and 4-4).
Figures 1-4 : Rate of germination of Alyssum spp seed under the salinity tension.

Figures 2-4 : Rate of germination of Tanacetum partenuim seed under the salinity tension

Figures 3-4 : Rate of germination of Alyssum spp seed under the aridity tension
Figures 4-4: Rate of germination of Tanacetumpartenuim seed under the aridity tension.

Correlation of the under examination attributes of the Alyssum spp plant has been given in table (1-4). As it has been determined, there is a positive significant correlation among the number of germinated seeds, percentage and rate of germination, as well as the length and shoot lengths. Regarding the relationship between the and dry weights as well as the other attributes, a negative correlation has been shown. This means that the obtained wet and dry weights in each of the treatments have decreased by continuing the experiment under the different salinity and aridity treatments. It is while the lengths of shoot and also length increased by increasing the application of treatments thanks to obtaining nutrients and light for the embryo, nutrition and growth. However, this increase is accompanied by thinning the herbal structure.

Table (1-4): results correlation estimated Alyssum spp under stress drought and salinity conditions laboratory.

(y1-y15 number of germinated seeds, y16 germination, y17 germination rate, y18 weight, y19 dry, y20 during the shoot, y21 root length).

Correlation of the under measurement attributes in the plant of Tanacetumpartenuimum has been shown in table (2-4). As it has been determined, there is a positive significant correlation between the number of germinated seeds, percentage and rate of germination, as well as the length and shoot lengths. Regarding the relationship between the wet and dry weights and the other attributes, a negative correlation has been seen. This means that wet and dry weights of each of the treatments have
increasing the number of application days of different salinity and aridity treatments. It has been seen that application of treatments, but just the obtained dry and wet weights decrease thanks to thinning the herbal structures.

Table (2-4): results correlation estimated Tanacetumpartenium under stress drought and salinity conditions laboratory.

(\(y_1\)-\(y_{15}\) number of germinated seeds, \(y_{16}\) germination, \(y_{17}\) germination rate, \(y_{18}\) weight, \(y_{19}\) dry, \(y_{20}\) during the shoot, \(y_{21}\) root length).
<table>
<thead>
<tr>
<th></th>
<th>Y10</th>
<th>Y9</th>
<th>Y8</th>
<th>Y7</th>
<th>Y6</th>
<th>Y5</th>
<th>Y4</th>
<th>Y3</th>
<th>Y2</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
<td>Y4</td>
<td>Y5</td>
<td>Y6</td>
<td>Y7</td>
<td>Y8</td>
<td>Y9</td>
<td>Y10</td>
</tr>
<tr>
<td></td>
<td>Y11</td>
<td>Y12</td>
<td>Y13</td>
<td>Y14</td>
<td>Y15</td>
<td>Y16</td>
<td>Y17</td>
<td>Y18</td>
<td>Y19</td>
<td>Y20</td>
</tr>
<tr>
<td></td>
<td>Y21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21</th>
<th>Y20</th>
<th>Y19</th>
<th>Y18</th>
<th>Y17</th>
<th>Y16</th>
<th>Y15</th>
<th>Y14</th>
<th>Y13</th>
<th>Y12</th>
<th>Y11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
<td>Y4</td>
<td>Y5</td>
<td>Y6</td>
<td>Y7</td>
<td>Y8</td>
<td>Y9</td>
<td>Y10</td>
</tr>
<tr>
<td></td>
<td>Y11</td>
<td>Y12</td>
<td>Y13</td>
<td>Y14</td>
<td>Y15</td>
<td>Y16</td>
<td>Y17</td>
<td>Y18</td>
<td>Y19</td>
<td>Y20</td>
</tr>
<tr>
<td></td>
<td>Y21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Y10</th>
<th>Y9</th>
<th>Y8</th>
<th>Y7</th>
<th>Y6</th>
<th>Y5</th>
<th>Y4</th>
<th>Y3</th>
<th>Y2</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
<td>Y4</td>
<td>Y5</td>
<td>Y6</td>
<td>Y7</td>
<td>Y8</td>
<td>Y9</td>
<td>Y10</td>
</tr>
<tr>
<td></td>
<td>Y11</td>
<td>Y12</td>
<td>Y13</td>
<td>Y14</td>
<td>Y15</td>
<td>Y16</td>
<td>Y17</td>
<td>Y18</td>
<td>Y19</td>
<td>Y20</td>
</tr>
<tr>
<td></td>
<td>Y21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Y10</th>
<th>Y9</th>
<th>Y8</th>
<th>Y7</th>
<th>Y6</th>
<th>Y5</th>
<th>Y4</th>
<th>Y3</th>
<th>Y2</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
<td>Y4</td>
<td>Y5</td>
<td>Y6</td>
<td>Y7</td>
<td>Y8</td>
<td>Y9</td>
<td>Y10</td>
</tr>
<tr>
<td></td>
<td>Y11</td>
<td>Y12</td>
<td>Y13</td>
<td>Y14</td>
<td>Y15</td>
<td>Y16</td>
<td>Y17</td>
<td>Y18</td>
<td>Y19</td>
<td>Y20</td>
</tr>
<tr>
<td></td>
<td>Y21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Y10</th>
<th>Y9</th>
<th>Y8</th>
<th>Y7</th>
<th>Y6</th>
<th>Y5</th>
<th>Y4</th>
<th>Y3</th>
<th>Y2</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
<td>Y4</td>
<td>Y5</td>
<td>Y6</td>
<td>Y7</td>
<td>Y8</td>
<td>Y9</td>
<td>Y10</td>
</tr>
<tr>
<td></td>
<td>Y11</td>
<td>Y12</td>
<td>Y13</td>
<td>Y14</td>
<td>Y15</td>
<td>Y16</td>
<td>Y17</td>
<td>Y18</td>
<td>Y19</td>
<td>Y20</td>
</tr>
<tr>
<td></td>
<td>Y21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Y10</th>
<th>Y9</th>
<th>Y8</th>
<th>Y7</th>
<th>Y6</th>
<th>Y5</th>
<th>Y4</th>
<th>Y3</th>
<th>Y2</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
<td>Y4</td>
<td>Y5</td>
<td>Y6</td>
<td>Y7</td>
<td>Y8</td>
<td>Y9</td>
<td>Y10</td>
</tr>
<tr>
<td></td>
<td>Y11</td>
<td>Y12</td>
<td>Y13</td>
<td>Y14</td>
<td>Y15</td>
<td>Y16</td>
<td>Y17</td>
<td>Y18</td>
<td>Y19</td>
<td>Y20</td>
</tr>
<tr>
<td></td>
<td>Y21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

Considering the obtained results, it is inferred that the highest limits of endurance against salinity and aridity for the two plants of Alyssumspp and Tanacetumpartenuim were 0.75 and 0.5 molar as well as -0.9 and -0.9 bar, respectively.

By comparing the growth trend of the length and shoot lengths under the different salinity and aridity treatments, it was observed that a reducing trend began in the plants of Tanacetumpartenuim and Alyssumspp from the limit of 0.5 and 0.75 molar on, respectively. It is while regarding the endurance against aridity, the reducing trend was seen in the plants of Alyssumspp and Tanacetumpartenuim from the limit of 0.5 and -0.9 bar on, respectively.

Considering the table (1-4) and (2-4), a correlation is seen among the attributes based on which there is an increasing trend between the length and shoot lengths (0.088 and 0.099), and a decreasing and reverse one between the dry and wet weight attributes (0.032 and 0.038).

By studying the figure showing the linear trend of length and shoot lengths, dry and wet weights, as well as rate and percentage of the germination, it is observed that there is not a significant difference between the two plants of Alyssumspp and Tanacetumpartenuim for the salinity of 0.75 and 0.5 molar and the aridity of -0.9 bar.

However, they are completely distinct from each other for the other levels of salinity and aridity, that it is indicative of more influence.
from salinity and aridity on the plants of Alyssumspp and Tanacetumpartenuim.

In the stage of seed germination, salinity causes the cellular membranes’, especially the cytoplasm one, to be damaged, which this brings forth as a result the increase in the membranes permeability thanks to the replacement of Ca\(^{2+}\) by Na\(^+\) by which K\(^+\) losses increase too (Takel, 2000). There was a correspondence between the reduction in the dry weight of the shoot and length resulting from the salinity and aridity tension, because increasing the salinity and aridity tensions causes the dry weight of the shoot and length to be decreased in the present research. The results obtained out of this research corresponded with the ones got out of the present study (Karimi, et al., 2011).

It seems that the reduction in the plantlets wet weight issued the reduction in the water absorption. Osmosis regulation can decrease the growth sensitivity to the aridity and salinity tension or make the slight increase intensio by regulating the pressure.

Therefore, the reduction in the plantlets growth and as a result changing its wet Weigh can be related to the regulation of the pressure (Basirirad and Kooldool, 2006). Both NACL and PEG Solution Affected negatively the plantlets initial germination and growth, but comparisons of the two solutions effects in a similar osmosis potential indicated that PEG preventing effect was more severe than NACL solution. It is because PEG molecules are very large and prevent water absorption and also reduce the water potential by the seed through absorbing water and reducing osmosis Potential.

The results showed that the preventing effect of osmosis potential reduction in salinity conditions was more important than the ionic Toxicity effects resulting from NA\(^+\) and CL\(^-\). In addition, the results obtained out of examining the germination of the non-germinated seeds under the salinity conditions in the unstressed environment (improvement experiment were also indicative of the germination significance having been conveyed to the unmentioned environment.) (Khajeh Hosseini, et al., 2007, linch and laoochi, 1988).

Similar results were obtained regarding Canola (Andalibi et al, 1973), wheat (Majnon Hoseini et al., 2002), sunflower (Kaya et al., 2006) and pea (Okcu et al, 2005), based on which water absorption by the seed was disordered under the aridity tension conditions, which this can cause the seeda germination to be decreased under these conditions. It seems that reduction in
water absorption by the seed resulting from the aridity tension causes the physiological and metabolical procedures of the seed to be decreased, and so it falls in trouble accessing to the abundant available substances for the plantlets survival until growing to the full placement stage (De& kar , 1994).

ACKNOWLEDGMENT

This article is extracted from my thesis under the title of “Study of drought and salt stress on germination indexes of alyssum spp and tanacetum partenium”. Hereby, I extend my sincere appreciation to Islamic Azad university of Shahrekord for the efforts and supports they provided to me.

REFERENCES

genotypes. Agronomy Researches of Iran. 3: 69-80.

