EVALUATION OF STANDING LONG JUMPING FUNDAMENTAL SKILL DEVELOPMENTAL SEQUENCE IN CHILDREN

FATEMEH PASAND¹*, MOZHDEH KESHAVARZ², SOHEILA MIRZAEI3, ZEINAB ZEINALI4

¹: Assistant Professor, Department of Physical Education-Shiraz University-Iran
², 3, 4: Physical Education-Shiraz University

*Corresponding Author: E Mail: pasand@shirazu.ac.ir; Ph.: +98 7136134899

ABSTRACT

Fundamental Movement Skills (FMS) are skills that enable children to interact and explore their environment. The standing long jump has been included in numerous motor and physical fitness batteries with the primary purpose of determining jumping ability in relation to maximum distance. The purpose of this study was to investigate the developmental sequence of basic skills in children 2 to 6 years old standing long jump in Shiraz-Iran.

Data was collected by video film from three angles, face, back and side. Pattern of pair’s Long jump assessment by use stepwise Clark and Phillips (1985) scale and movement patterns general characteristics were analyzed. The Research was conducted on the sample of 151 preschool children (85 boys and 66 girls) aged 2-6 years from Shiraz- Iran.

Age and gender differences were calculated by the Univariate analysis of variance. The results of the analysis of variance showed no significant differences were found in the quality of the standing long jump performance between boys and girls and based on age groups.

Keywords: Developmental Sequence, Fundamental Movement Skills, Standing Long Jump, Children

INTRODUCTION

Motor development is a continuous process through which a child acquires movement patterns and skills. The development of motor competence is dependent upon and influenced
by the growth and maturity characteristics of the child (morphological, physiological and neuromuscular), as well as environmental factors (specific practice, rearing atmosphere, play opportunities and objects [21].

Fundamental movement skills (FMS) are skills that unable children to interact and explore their environment. Besides being fundamental and irreplaceable in most human abilities and features, these movement structures make a firm base for the development of more advanced and complex movement skills [14].

Jumping is a fundamental human movement that requires complex motor coordination of both upper and lower body segments [3]. Jumping is a fundamental movement that occurs when the body is projected into the air by force generated in one or both legs and the body lands on one or both feet. Jumping can be accomplished in several ways. Keogh and Sugden (1985), however, suggested that a more sensible way to consider the beginning of jumping development is to examine jumping patterns that involve a two-footed takeoff. The two-footed jumping patterns that have received the most attention are the vertical jump and the horizontal or standing long jump. In the horizontal jump, the body is propelled both upward and outward [28].

Standing long jump (SLJ) is a multi-joint movement that is commonly used to assess explosive leg power [24]. Due to its simple and time-efficient implementation that does not require any equipment, it is routinely used by coaches of several sports for talent selection and prediction of potential [4]. Also, SLJ performance is significantly correlated with physical characteristics, such as lean leg volume [10] and other explosive muscular strength tests of the lower body [5]. However, body dimensions may significantly affect performance when SLJ is used for the assessment of leg muscle power in children, since taller individuals may jump longer than shorter ones with the same leg muscle power [7]. The most important factors for this outcome are the higher center of mass and the longer leg length in taller children [2], which increase the trajectory of the center of mass and thus SLJ performance. Wakai and Linthorne (2005) divided SLJ performance (distance) into three parts: (a) the take-off distance, which is defined as the horizontal distance between the take-off line and the jumper’s center of mass at the instant of take-off, (b) the flight distance, which is the horizontal distance travelled by the center of mass while airborne and (c) the landing distance, which is defined as the distance between the center of mass and the heels of
the feet at the instant of landing. Both the takeoff and landing distances are strongly affected by leg length, i.e. they are greater in an individual with longer legs, while the flight distance mainly depends on leg muscle power. Consequently, during physical development, children may increase SLJ performance simply because height and leg length are increased [32].

An additional important factor that may influence SLJ performance is skill. Skill in children does not only depend on practice, but it is influenced by neuromuscular maturation [2]. Compared with vertical countermovement jump, SLJ requires more coordination of movements, timing and technique, since both the takeoff angle and the position of the limbs during takeoff and landing may change the horizontal distance jumped [1,7,22,27].

In that respect, individuals with greater strength that allows them to lift their legs higher during landing, and/or children with a more mature neuromuscular system may have an advantage. Gender may affect SLJ performance with boys performing better than girls [5,18,26], but this occurs only during puberty and not in early childhood.

The results Nikolic et al (2013) with titled Standing Long Jump Performance Quality: Age and Gender Differences indicated significant differences between age groups (5-6 and 6-7 years) were jumping in all the variables, but was not observed significant differences in the quality of performances between boys and girls horizontal jumping.

The purpose of this study was to investigate the developmental sequence of basic skills in children 2 to 6 years old standing long jump in Shiraz-Iran.

SUBJECTS AND METHODS

Participants

Research was conducted on 151 preschool children from Shiraz (85 Boys and 66 Girls) between 2-6 years of old. The participants were selected randomly and divided into four age groups (2-3, 3-4, 4-5 and 5-6 years). The Mean age of boys (2.49±1.07 yr) and Girls (2.44±1.07 yr), the Mean weight of Boys (18.11±2.70 kg) and Girls (16.92 ± 4.02 kg) Mean height of boys (104±1.39 cm) and Girls (97.61±1.61 cm) and Mean time spent in preschool for Boys (1.88±1.07 yr) and Girls (1.77±1.10 yr).

Data collection instruments

Data were collected by film from three angles, face, back and side. Pattern of pairs Long jump assessment by use stepwise Clark and Phillips (1985) scale and movement patterns general characteristics were analyzed. In this study, pairs long jump task including a jump from on line by all force. This action was repeated for each subject once. In pattern
of pair’s Long jump were studied two movement parts leg and hand.
Legwork part consists of four stages:
First Stage: One foot take off;
Second Stage: Knee extension first;
Third Stage: Simultaneous extension;
Fourth Stage: Heels up first, In fact, this component is developed in the long jump.
Handwork part consists of four stages:
First stage: no action;
Second stage: arms swing forward;
Third stage: arms extend, then partially flex;
Fourth stage: arms extend, then fully flex, in fact, this component is developed in the long jump.

Statistical Analysis
Children were video-taped from three angle of the jumping position at a distance of 2 meters. Every examinee performed one jump. Also, the length of the jump was measured (JUMP). Data were evaluated afterwards by viewing the recorded jump performance in slow motion. Normal distribution of variables was tested by Kolmogorov-Smirnov test. For determining statistical significance of differences in each variable between groups of subject, univariate analysis of variance (ANOVA) was used. Statistical significance was set at p<0.05. Statistical analyses were performed using the SPSS version 19.0 for window.

RESULTS
The results showed the highest percent (53.8%) in the age group (2-3) of girls was in first stage of leg part (one foot take off) and the lowest percent (11.1%) was in first stage of hand part (no action). The highest percent (33.3%) in the age group (3-4) of girls was in second stage of leg part (Knee extension first) and the lowest percent (18.2%) was in forth stage of hand part (Arms extend, then fully flex). The highest percent (44.4%) in the age group (4-5) of girls was in first stage of hand part (No action) and the lowest percent (15.4%) was in first stage of leg part (one foot take off). The highest percent (36.4%) in the age group (5-6) of girls was in forth stage of hand part (Arms extend, then fully flex) and the lowest percent (15.4%) was in second stage of leg part (Knee extension first). The highest percent (52.2%) in the age group (2-3) of boys was in first stage of leg part (One foot take off) and the lowest percent (6.2%) was in forth stage of hand part (Arms extend, then fully flex). The highest percent (32.3%) in the age group (3-4) of boys was in second stage of leg part (Knee extension first) and the lowest percent (12.5%) was in forth stage of hand part (Arms extend, then fully flex). The highest percent (50%) in the age group (4-5) of boys was in forth stage of hand part (Arms extend, then fully flex) and the lowest percent
(6.7%) was in first stage of hand part (No action). The highest percent (33.3%) in the age group (5-6) of boys was in first stage of hand part (No action) and the lowest percent (4.3%) was in first stage of leg part (one foot take off).

Univariate analysis of variance (table 2) determined no statistically significant differences between the participants according to age in all variables, namely: One foot take off (F=0.36; p= 0.54), Knee extension first (F=0.29; p= 0.58), Simultaneous extension (F=0.16; p= 0.68), Heels up first (F=0.47; p= 0.49), No action (F=0.74; p= 0.38), Arms swing forward (F=0.70; p= 0.40) Arms extend, then partially flex (F=0.01; p= 0.91), Arms extend, then fully flex (F=0.16; p= 0.68).

In the all variables there was no significant difference between girls and boys, namely: One foot take off (F=0.34; p= 0.79), Knee extension first (F=0.56; p= 0.63), Simultaneous extension (F=1.46; p= 0.22), Heels up first (F=1.07; p= 0.36), No action (F=1.95; p= 0.12), Arms swing forward (F=1.19; p= 0.31) Arms extend, then partially flex (F=0.69; p= 0.55), Arms extend, then fully flex (F=0.57; p= 0.63).

Table 1: The descriptive information by age groups and gender

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Percent of girls</th>
<th>Percent of boys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-3</td>
<td>3-4</td>
</tr>
<tr>
<td>One foot take off</td>
<td>53.8</td>
<td>23.1</td>
</tr>
<tr>
<td>Knee extension first</td>
<td>23.8</td>
<td>33.3</td>
</tr>
<tr>
<td>Simultaneous extension</td>
<td>21.2</td>
<td>23.1</td>
</tr>
<tr>
<td>Heels up first</td>
<td>17.5</td>
<td>25</td>
</tr>
<tr>
<td>No action</td>
<td>11.1</td>
<td>22.2</td>
</tr>
<tr>
<td>Arms swing forward</td>
<td>26.2</td>
<td>23.8</td>
</tr>
<tr>
<td>Arms extend, then partially flex</td>
<td>15.6</td>
<td>28.1</td>
</tr>
<tr>
<td>Arms extend, then fully flex</td>
<td>18.2</td>
<td>18.2</td>
</tr>
</tbody>
</table>

Table 2: Difference between qualities of the acquired standing long jump based on age

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>One foot take off</td>
<td>0.55</td>
<td>0.50</td>
<td>0.26</td>
<td>0.44</td>
<td>0.13</td>
<td>0.34</td>
<td>0.07</td>
<td>0.26</td>
<td>0.36</td>
<td>0.54</td>
</tr>
<tr>
<td>Knee extension first</td>
<td>0.32</td>
<td>0.47</td>
<td>0.50</td>
<td>0.50</td>
<td>0.40</td>
<td>0.49</td>
<td>0.21</td>
<td>0.41</td>
<td>0.29</td>
<td>0.58</td>
</tr>
<tr>
<td>Simultaneous extension</td>
<td>0.61</td>
<td>0.49</td>
<td>0.79</td>
<td>0.41</td>
<td>0.93</td>
<td>0.25</td>
<td>0.96</td>
<td>0.18</td>
<td>0.16</td>
<td>0.68</td>
</tr>
<tr>
<td>Heels up first</td>
<td>0.55</td>
<td>0.50</td>
<td>0.55</td>
<td>0.50</td>
<td>0.72</td>
<td>0.45</td>
<td>0.60</td>
<td>0.49</td>
<td>0.47</td>
<td>0.49</td>
</tr>
<tr>
<td>No action</td>
<td>0.17</td>
<td>0.38</td>
<td>0.17</td>
<td>0.38</td>
<td>0.11</td>
<td>0.32</td>
<td>0.25</td>
<td>0.44</td>
<td>0.74</td>
<td>0.38</td>
</tr>
<tr>
<td>Arms swing forward</td>
<td>0.52</td>
<td>0.50</td>
<td>0.64</td>
<td>0.48</td>
<td>0.70</td>
<td>0.46</td>
<td>0.67</td>
<td>0.47</td>
<td>0.70</td>
<td>0.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>Gender</th>
<th>Boys</th>
<th>Girls</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>One foot take off</td>
<td></td>
<td>0.27</td>
<td>0.22</td>
<td>0.34</td>
<td>0.79</td>
</tr>
<tr>
<td>Knee extension first</td>
<td></td>
<td>0.37</td>
<td>0.33</td>
<td>0.47</td>
<td>0.56</td>
</tr>
<tr>
<td>Simultaneous extension</td>
<td></td>
<td>0.82</td>
<td>0.84</td>
<td>0.36</td>
<td>1.46</td>
</tr>
<tr>
<td>Heels up first</td>
<td></td>
<td>0.61</td>
<td>0.66</td>
<td>0.47</td>
<td>1.07</td>
</tr>
<tr>
<td>No action</td>
<td></td>
<td>0.22</td>
<td>0.16</td>
<td>0.37</td>
<td>1.95</td>
</tr>
<tr>
<td>Arms swing forward</td>
<td></td>
<td>0.60</td>
<td>0.66</td>
<td>0.47</td>
<td>1.19</td>
</tr>
<tr>
<td>Arms extend, then partially flex</td>
<td></td>
<td>0.50</td>
<td>0.51</td>
<td>0.50</td>
<td>0.69</td>
</tr>
<tr>
<td>Arms extend, then fully flex</td>
<td></td>
<td>0.21</td>
<td>0.18</td>
<td>0.21</td>
<td>0.57</td>
</tr>
</tbody>
</table>

DISCUSSION

Research on the early childhood years, however, has changed the focus to the development of process characteristics. Frequently, the performance of the standing long jump is a problem for children due primarily to the angle of projection and the required coordination of arm action with leg movements. Mastery of the standing long jump is usually not observed before age 6 and sometimes even in adolescence and adulthood [13].

The primary aim of this research was to determine age and gender differences in the quality of the performance of a fundamental motor skill - the standing long jump. Although children develop motor skills are not age-related phenomenon, but most forms of children's potential to develop these skills are at the end of six years. Several factors are such as individual differences, opportunities, experiences and environmental conditions can to create differences in reaching to the advanced their skills. Gender differences may also be one of the causes of these differences. However, this difference in terms of training opportunities and environmental accommodations for the cultural attitudes for greater freedom to participate in activities for boys compared with girls.

On the basis of the conducted analyses and the obtained results, it is evident that there is no a significant difference in the knowledge level of performance of the standing long jump in all components.

The obtained results were not consistent with the results of previous research. For instance, Gabbard (2000) suggests that successful...
performance level of the standing long jump is not recorded up to 6 years of age [13], and a similar sequence continues in adolescence and adulthood, mostly in the form of limited arm swing and incomplete leg extension at take-off [16]. Qualitative improvements in jumping vary among children. For example, Clark and Phillips (1985) observed that 30% of the 3 to 7 years old had the same level of leg and arm action [9]. Some had more advanced leg action than arm action, but some had more advanced arm than leg action. If one component was more advanced than the other, it was usually by one step, but some children were two steps more advanced in one component than the other. Several developmental sequences were noticed in the observational studies of the standing long jump [8,31]. The long jump requires that the body be propelled forward and upward. This necessitates that the center of gravity be slightly ahead of the base of support at take-off, which may create difficulty in maintaining forward balance; there is a strong tendency for the novice to step out with one foot to avoid falling. Such reflection causes asymmetrical leg action at takeoff, flight and landing [16]. To improve this leg action, the jumper needs to first make a symmetrical, two-footed take-off, flight and landing; and second, fully extend the ankles, knees and hips at take-off, following a deep preparatory crouch. The trunk leans forward at least 30 degrees from the vertical.

Gender differences in the quality of the standing long jump acquisition were not obtained, which is consistent with the results of the research conducted on a sample of 7 year-old children [23]. A longitudinal study [15], where the level of knowledge was assessed with composite model, showed that there was no difference between genders in achieving advanced levels of the standing long jump, i.e. both genders showed equal progression from the 1st to 5th level of knowledge. Significant difference in the variable jump length in favor of boys may be explained by the results of previous studies [11] where boys were superior in the results of the standing long jump. Also, a comprehensive meta-analysis [17] showed that girls were superior at the age of 2 years and boys at the age of 6 years. It seems the differences are conditioned by different interests for physical activities and play and also by different social expectations [20].

CONCLUSION
The research conducted on a sample of 151 preschool children examined age and gender differences in the quality of the acquired knowledge of the standing long jump. The level of motor knowledge was evaluated by a
component approach, which assessed the performance of the standing long jump for each component separately. Component approach provides a more precise description of the developmental changes compared to the composite approach. Thus, the progress in each component can be precisely determined, enabling better monitoring of the individual progress of each child. The results obtained in the research showed no significant differences by age in all components. Gender differences in the adoption quality of the standing long jump were not observed which is consistent with the previous research. Evaluation of motor knowledge in preschool children enables higher quality organization of kinesiological activities intended for children at that age. The obtained data indicate that preschool teachers and generalist teachers should have an individualized approach in the adoption process and the improvement of motor knowledge.

REFERENCES

